ISSN 1600-5368

7-Azido-*N*,*N*-diethyl-4,5-O-isopropylidene-4-C-methyl-3,6-anhydro-7-deoxy-D-glycero-D-manno-heptonamide

Sarah F. Jenkinson,^a* Chen Wang,^a Maria-Soledad Pino-González,^b George W. J. Fleet^a and David J. Watkin^c

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England, ^bDepartamento de Bioquímica, Biología Molecular y Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain, and ^cDepartment of Chemical Crystallography, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, England

Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

Received 19 December 2008; accepted 31 December 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.129; data-to-parameter ratio = 9.2.

The reaction of 5-azido-5-deoxy-2,3-*O*-isopropylidene-2-*C*-methyl-D-ribose with *N*,*N*-diethyl-2-(dimethylsulfuranylidene)acetamide gave the title compound, $C_{15}H_{26}N_4O_5$, as the major product arising from initial formation of an epoxide which was subsequently opened by intramolecular attack of the free 4-hydroxyl group. X-ray crystallography confirmed the relative stereochemistry of the title compound and the absolute configuration was determined by the use of D-ribose as the starting material. The crystal structure contains chains of molecules running parallel to the *a* axis, being linked by weak bifurcated $O-H \cdots (N,N)$ hydrogen bonds.

Related literature

For related literature see: Assiego *et al.* (2004); Pino-González *et al.* (2003, 2008); Valpuesta Fernández *et al.* (1990); Valpuesta *et al.* (1993); Görbitz (1999).

Experimental

Crystal data $C_{15}H_{26}N_4O_5$ $M_r = 342.40$

Orthorhombic, $P2_12_12_1$ a = 8.64400 (10) Å b = 13.4195 (2) Å c = 15.9146 (3) Å $V = 1846.06 (5) \text{ Å}^{3}$ Z = 4

Data collection

Area diffractometer Absorption correction: multi-scan (*DENZO/SCALEPACK*; Otwinowski & Minor, 1997) $T_{min} = 0.82, T_{max} = 0.96$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ 217 parameters $wR(F^2) = 0.129$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.24$ e Å $^{-3}$ 1992 reflections $\Delta \rho_{min} = -0.20$ e Å $^{-3}$

Table 1	
Hydrogen-bond geometry (Å, °)	1.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O17-H171\cdots N10^{i}$	0.88	2.30	3.112 (4)	152
$O17-H171\cdots N11^{i}$	0.88	2.45	3.313 (4)	167

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

MSPG is grateful to Junta de Andalucia for a grant. The authors thank the Oxford University Crystallography Service for use of the instruments.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2750).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Assiego, C., Pino-González, M.-S. & López-Herrera, F. J. (2004). Tetrahedron Lett. 45, 2611–2613.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pino-González, M.-S., Assiego, C. & López-Herrera, F. J. (2003). Tetrahedron Lett. 44, 8353–8356.
- Pino-González, M.-S., Assiego, C. & Oña, N. (2008). Tetrahedron Asymmetry, 19, 932–937.
- Valpuesta, M., Durante, P. & López-Herrera, F. J. (1993). Tetrahedron, 42, 9547–9560.
- Valpuesta Fernández, M. V., Durante-Lanes, P. & López-Herrera, F. J. (1990). Tetrahedron, 46, 7911–7922.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

Mo $K\alpha$ radiation

 $0.60 \times 0.60 \times 0.40 \text{ mm}$

23123 measured reflections

2354 independent reflections

2077 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 150 K

 $R_{\rm int} = 0.077$

Acta Cryst. (2009). E65, o263 [doi:10.1107/S1600536808044279]

7-Azido-*N*,*N*-diethyl-4,5-*O*-isopropylidene-4-*C*-methyl-3,6-anhydro-7-deoxy-D-*glycero*-D-*manno*-heptonamide

S. F. Jenkinson, C. Wang, M.-S. Pino-González, G. W. J. Fleet and D. J. Watkin

Comment

The use of sulfur ylids in the stereoselective formation of epoxides and their subsequent regioselective opening has been utilized in the formation of iminosugars such as the seven-membered ring azepanes (Assiego *et al.*, 2004), pipecolic acid derivatives (Pino-González *et al.*,2008) and piperidines (Pino-González *et al.*, 2003). In order to extend this methodology the reaction of azido ribose derivative **1** with *N*,*N*-diethyl-2-(dimethylsulfuranylidene)acetamide was investigated.

Reaction of azido ribose derivative **1** with the sulfur ylid gave the title compound, furan **3**, as the major product (Fig. 1). The product was confirmed, by both X-ray crystallography and the use of D-ribose as the starting material, to have the D-glycero-D-manno stereochemistry (Fig. 2) arising from initial attack of the ylid on the *Si* face of the aldehyde, as predicted from a Felkin-Ahn model (Valpuesta Fernández *et al.*, 1990; Valpuesta *et al.*, 1993), resulting in formation of epoxide **2**, followed by intramolecular opening of the epoxide to give the title compound **3**.

The compound was seen to adopt weakly $(O-H\cdots N)$ hydrogen bonded chains of molecules running parallel to the *a*-axis. The hydrogen bond is bifurcated (Fig. 3). Only classical hydrogen bonding has been considered.

Experimental

The title compound was recrystallized by vapour diffusion from a mixture of ethyl acetate and cyclohexane: m.p. 371-373 K; $[\alpha]_D^{23}$ +16.4 (*c*, 1.0 in CHCl₃).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.16) reflects changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (*DENZO/SCALEPACK*, Otwinowski & Minor, 1997).

The refinement was performed excluding the data for which I was less than $3\sigma(I)$.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figures

7-Azido-N,N-diethyl-4,5-O-isopropylidene-4-C- methyl-3,6-anhydro-7-deoxy-D-glycero-D-manno-heptonamide

Crystal data	
$C_{15}H_{26}N_4O_5$	$F_{000} = 736$
$M_r = 342.40$	$D_{\rm x} = 1.232 {\rm ~Mg~m^{-3}}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 2356 reflections
a = 8.64400 (10) Å	$\theta = 5-27^{\circ}$
b = 13.4195 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 15.9146 (3) Å	T = 150 K
$V = 1846.06 (5) \text{ Å}^3$	Plate, colourless
Z = 4	$0.60 \times 0.60 \times 0.40 \text{ mm}$
Data collection	
Area diffractometer	2077 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.077$
T = 150 K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 5.1^{\circ}$
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997)	$h = -11 \rightarrow 11$
$T_{\min} = 0.82, \ T_{\max} = 0.96$	$k = -17 \rightarrow 17$
23123 measured reflections	$l = -20 \rightarrow 20$
2354 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.049$	Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + (0.1P)^2 + 0.29P],$ where $P = [\max(F_0^2, 0) + 2F_c^2]/3$
$wR(F^2) = 0.129$	$(\Delta/\sigma)_{\rm max} = 0.0003$
<i>S</i> = 1.02	$\Delta \rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$
1992 reflections	$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$
217 parameters	Extinction correction: None
Primary atom site location: structure-invariant direct	

methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.35653 (19)	0.34433 (12)	0.66423 (11)	0.0350
C2	0.3014 (3)	0.24404 (17)	0.66153 (15)	0.0332
C3	0.4224 (3)	0.18015 (18)	0.70965 (16)	0.0371
O4	0.3791 (2)	0.17151 (16)	0.79595 (11)	0.0446
C5	0.4967 (3)	0.2129 (2)	0.84827 (18)	0.0489
O6	0.5741 (3)	0.28402 (17)	0.79711 (13)	0.0567
C7	0.5654 (3)	0.2496 (2)	0.71213 (16)	0.0414
C8	0.5218 (3)	0.33863 (19)	0.65738 (15)	0.0359
C9	0.5726 (3)	0.32292 (19)	0.56645 (15)	0.0369
N10	0.5219 (3)	0.40493 (18)	0.51111 (14)	0.0432
N11	0.3807 (3)	0.40751 (17)	0.49594 (14)	0.0432
N12	0.2579 (3)	0.4190 (2)	0.47516 (19)	0.0629
C13	0.4212 (5)	0.2678 (3)	0.9201 (2)	0.0714
C14	0.6054 (4)	0.1311 (3)	0.8787 (2)	0.0650
C15	0.4486 (3)	0.0783 (2)	0.6708 (2)	0.0472
C16	0.1375 (3)	0.23817 (17)	0.69753 (16)	0.0343
O17	0.0763 (2)	0.14313 (12)	0.67786 (11)	0.0401
C18	0.0305 (3)	0.31779 (18)	0.65939 (15)	0.0334
O19	-0.0340 (2)	0.29828 (14)	0.59206 (12)	0.0424
N20	0.0093 (2)	0.40342 (15)	0.70067 (14)	0.0364
C21	-0.0987 (3)	0.47788 (19)	0.66655 (18)	0.0407
C22	-0.0208 (4)	0.5595 (3)	0.6178 (2)	0.0626
C23	0.0809 (3)	0.4266 (2)	0.78247 (16)	0.0430
C24	-0.0166 (4)	0.3904 (3)	0.85556 (18)	0.0562
H21	0.2943	0.2241	0.6020	0.0397*
H71	0.6551	0.2162	0.6930	0.0485*
H81	0.5759	0.3970	0.6784	0.0443*
H91	0.5284	0.2612	0.5394	0.0490*
H92	0.6863	0.3164	0.5677	0.0495*

H131	0.4998	0.2997	0.9504	0.1074*
H132	0.3617	0.2267	0.9575	0.1071*
H133	0.3543	0.3189	0.9005	0.1069*
H141	0.7116	0.1505	0.8701	0.1022*
H142	0.5918	0.1211	0.9387	0.1023*
H143	0.5851	0.0695	0.8476	0.1021*
H151	0.5319	0.0397	0.6952	0.0807*
H152	0.3501	0.0445	0.6815	0.0799*
H153	0.4686	0.0848	0.6104	0.0790*
H161	0.1438	0.2430	0.7599	0.0419*
H211	-0.1602	0.4457	0.6266	0.0494*
H212	-0.1637	0.5025	0.7098	0.0491*
H222	-0.1025	0.5966	0.5865	0.1080*
H221	0.0567	0.5295	0.5787	0.1079*
H223	0.0279	0.6004	0.6627	0.1076*
H232	0.1785	0.3960	0.7850	0.0507*
H231	0.0915	0.4974	0.7838	0.0496*
H243	0.0323	0.4135	0.9063	0.0898*
H242	-0.0188	0.3185	0.8585	0.0891*
H241	-0.1201	0.4187	0.8522	0.0890*
H171	0.0318	0.1201	0.6319	0.0671*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0338 (8)	0.0344 (8)	0.0368 (8)	-0.0019 (7)	0.0028 (7)	-0.0011 (7)
C2	0.0358 (12)	0.0336 (11)	0.0303 (10)	-0.0013 (9)	-0.0010 (9)	-0.0023 (9)
C3	0.0367 (12)	0.0413 (12)	0.0333 (11)	0.0024 (10)	0.0011 (10)	0.0029 (10)
O4	0.0404 (9)	0.0598 (11)	0.0336 (9)	0.0000 (9)	-0.0027 (8)	0.0075 (8)
C5	0.0477 (15)	0.0614 (17)	0.0376 (12)	0.0017 (13)	-0.0068 (12)	0.0052 (12)
O6	0.0642 (13)	0.0683 (13)	0.0375 (9)	-0.0153 (11)	-0.0124 (10)	0.0036 (9)
C7	0.0361 (12)	0.0505 (14)	0.0375 (12)	-0.0017 (12)	-0.0042 (10)	-0.0010 (11)
C8	0.0316 (11)	0.0403 (12)	0.0358 (11)	-0.0059 (10)	0.0019 (10)	-0.0031 (11)
C9	0.0333 (11)	0.0418 (12)	0.0357 (11)	-0.0024 (10)	0.0015 (10)	0.0000 (10)
N10	0.0422 (12)	0.0454 (12)	0.0421 (11)	-0.0054 (10)	0.0024 (10)	0.0055 (9)
N11	0.0482 (14)	0.0450 (12)	0.0365 (10)	0.0012 (10)	0.0022 (10)	0.0005 (9)
N12	0.0513 (16)	0.080 (2)	0.0577 (15)	0.0105 (15)	-0.0074 (13)	0.0077 (15)
C13	0.079 (2)	0.092 (3)	0.0433 (15)	0.010(2)	-0.0073 (17)	-0.0083 (16)
C14	0.0592 (19)	0.077 (2)	0.0588 (18)	0.0085 (17)	-0.0179 (17)	0.0139 (17)
C15	0.0442 (14)	0.0386 (12)	0.0586 (16)	0.0043 (12)	0.0040 (13)	0.0010 (12)
C16	0.0347 (12)	0.0340 (11)	0.0342 (10)	-0.0023 (10)	-0.0002 (10)	-0.0002 (10)
017	0.0411 (9)	0.0356 (8)	0.0437 (9)	-0.0075 (8)	-0.0057 (8)	0.0017 (7)
C18	0.0286 (10)	0.0371 (11)	0.0345 (11)	-0.0013 (9)	0.0011 (9)	0.0013 (9)
019	0.0397 (10)	0.0462 (9)	0.0413 (9)	0.0055 (8)	-0.0070 (8)	-0.0070 (8)
N20	0.0348 (10)	0.0377 (10)	0.0366 (9)	0.0027 (8)	-0.0017 (8)	-0.0055 (8)
C21	0.0356 (12)	0.0413 (12)	0.0451 (13)	0.0055 (10)	-0.0023 (11)	-0.0043 (11)
C22	0.063 (2)	0.0606 (19)	0.0639 (19)	0.0157 (16)	0.0146 (17)	0.0167 (16)
C23	0.0496 (15)	0.0401 (12)	0.0393 (13)	0.0020 (12)	-0.0046 (12)	-0.0080 (11)

C24	0.070 (2)	0.0591 (17)	0.0393 (13)	0.0089 (16)	0.0069 (14)	-0.0047 (13)
Geometric param	neters (Å, °)					
O1—C2		1.429 (3)	С14—Н	1142	0	.972
O1—C8		1.435 (3)	С14—Н	1143	0	.979
C2—C3		1.554 (3)	С15—Н	[15]	0	.968
C2—C16		1.530 (3)	С15—Н	1152	0	.979
C2—H21		0.986	С15—Н	1153	0	.982
C3—O4		1.428 (3)	C16—C	017	1	.415 (3)
С3—С7		1.548 (4)	C16—C	218	1	.538 (3)
C3—C15		1.517 (4)	С16—Н	1161	0	.997
O4—C5		1.427 (4)	017—H	1171	0	.882
C5—O6		1.422 (4)	C18—C	019	1	.236 (3)
C5—C13		1.509 (5)	C18—N	120	1	.336 (3)
C5—C14		1.524 (4)	N20—C	221	1	.471 (3)
O6—C7		1.431 (3)	N20—C	223	1	.475 (3)
С7—С8		1.526 (4)	C21—C	222	1	.501 (4)
С7—Н71		0.946	С21—Н	1211	0	.934
С8—С9		1.527 (3)	С21—Н	1212	0	.947
C8—H81		0.972	С22—Н	1222	0	.998
C9—N10		1.476 (3)	С22—Н	1221	0	.999
С9—Н91		1.009	С22—Н	1223	0	.994
С9—Н92		0.987	С23—С	224	1	.516 (4)
N10—N11		1.245 (4)	С23—Н	1232	0	.940
N11—N12		1.122 (4)	С23—Н	1231	0	.955
C13—H131		0.936	С24—Н	1243	0	.962
C13—H132		0.960	С24—Н	1242	0	.967
С13—Н133		0.950	С24—Н	1241	0	.973
C14—H141		0.964				
C2—O1—C8		106.25 (18)	C5—C1	4—H142	1	09.8
O1—C2—C3		106.27 (19)	H141—	C14—H142	1	07.0
O1—C2—C16		110.26 (19)	C5—C1	4—H143	1	09.7
C3—C2—C16		114.23 (19)	H141—	C14—H143	1	09.0
O1—C2—H21		107.7	Н142—	C14—H143	1	11.0
C3—C2—H21		111.4	C3—C1	5—H151	1	15.5
C16—C2—H21		106.8	C3—C1	5—H152	1	02.5
C2—C3—O4		110.0 (2)	H151—	C15—H152	1	09.3
C2—C3—C7		102.59 (19)	C3—C1	5—H153	1	10.2
O4—C3—C7		103.5 (2)	H151—	C15—H153	1	08.0
C2—C3—C15		113.4 (2)	H152—	C15—H153	1	11.4
O4—C3—C15		110.9 (2)	C2—C1	6—O17	1	08.00 (19)
C7—C3—C15		115.7 (2)	C2—C1	6—C18	1	11.91 (19)
C3—O4—C5		110.1 (2)	017—0	C16—C18	1	08.32 (19)
O4—C5—O6		105.2 (2)	C2—C1	6—H161	1	08.6
O4—C5—C13		108.9 (3)	017—0	С16—Н161	1	07.5
O6—C5—C13		108.1 (3)	C18—C	C16—H161	1	12.4
O4—C5—C14		110.1 (3)	C16—C	017—H171	1	31.5
O6—C5—C14		112.1 (3)	C16—C	C18—O19	1	17.8 (2)

C13—C5—C14	112.2 (3)	C16-C18-N20	119.1 (2)
C5—O6—C7	107.4 (2)	O19—C18—N20	123.1 (2)
C3—C7—O6	105.1 (2)	C18—N20—C21	119.3 (2)
C3—C7—C8	105.0 (2)	C18—N20—C23	123.9 (2)
O6—C7—C8	107.4 (2)	C21—N20—C23	116.7 (2)
С3—С7—Н71	111.2	N20—C21—C22	113.7 (2)
O6—C7—H71	114.5	N20—C21—H211	107.4
С8—С7—Н71	112.9	C22—C21—H211	104.0
C7—C8—O1	104.13 (19)	N20—C21—H212	110.2
С7—С8—С9	111.2 (2)	C22—C21—H212	112.8
O1—C8—C9	111.5 (2)	H211—C21—H212	108.5
С7—С8—Н81	108.4	C21—C22—H222	107.7
O1—C8—H81	114.2	C21—C22—H221	109.2
С9—С8—Н81	107.4	H222—C22—H221	111.3
C8—C9—N10	112.2 (2)	C21—C22—H223	102.8
С8—С9—Н91	114.2	H222—C22—H223	112.6
N10-C9-H91	104.2	H221—C22—H223	112.7
С8—С9—Н92	106.3	N20-C23-C24	112.1 (2)
N10—C9—H92	112.0	N20—C23—H232	108.8
Н91—С9—Н92	108.2	С24—С23—Н232	109.1
C9—N10—N11	115.3 (2)	N20—C23—H231	105.7
N10-N11-N12	171.3 (3)	C24—C23—H231	110.8
С5—С13—Н131	107.4	H232—C23—H231	110.3
С5—С13—Н132	114.9	C23—C24—H243	107.2
H131—C13—H132	109.5	C23—C24—H242	111.6
С5—С13—Н133	111.5	H243—C24—H242	106.8
H131—C13—H133	106.3	C23—C24—H241	110.1
H132—C13—H133	107.0	H243—C24—H241	109.0
C5-C14-H141	110.3	H242—C24—H241	112.0

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C9—H91…O19 ⁱ	1.01	2.30	3.140 (4)	140
C9—H92…O19 ⁱⁱ	0.99	2.46	3.441 (4)	172
C23—H232…O1	0.94	2.56	3.231 (4)	129
C23—H231…O17 ⁱⁱⁱ	0.95	2.51	3.269 (4)	136
O17—H171…N10 ^{iv}	0.88	2.30	3.112 (4)	152
017—H171…N11 ^{iv}	0.88	2.45	3.313 (4)	167

Symmetry codes: (i) x+1/2, -y+1/2, -z+1; (ii) x+1, y, z; (iii) -x, y+1/2, -z+3/2; (iv) x-1/2, -y+1/2, -z+1.

Fig. 3